kafka avro producer example in scala
Here’s a quick example of how to create a Kafka Producer that sends Avro-serialized messages.
Important Note: a running instance of the Confluent Schema Registry is required to produce Avro messages. Why?
When sending a message to a topic t, the Avro schema for the key and the value will be automatically registered in the schema registry under the subject t-key and t-value, respectively, if the compatibility test passes.
source: https://docs.confluent.io/3.2.1/schema-registry/docs/serializer-formatter.html#serializer
The ID of the schema is then embedded in the serialized message, in bytes 1-4. My guess is so a consumer will be able to pull the schema and deserialize the message. TODO: confirm that.
First, the dependencies:
build.sbt
name := "avro-junkie"
version := "0.0.1"
mainClass in assembly := Some("com.lombardo.avroJunkie.Main")
scalaVersion := "2.11.8"
resolvers ++= Seq(
Classpaths.typesafeReleases,
"confluent" at "http://packages.confluent.io/maven/"
)
libraryDependencies ++= Seq(
"org.scalatest" %% "scalatest" % "3.0.1" % "test",
"org.apache.kafka" % "kafka_2.11" % "0.10.0.0",
"org.apache.avro" % "avro" % "1.8.2",
"io.confluent" % "kafka-avro-serializer" % "3.2.1"
)
package com.lombardo.avroJunkie.services
import java.util.Properties
import org.apache.avro.Schema.Parser
import org.apache.avro.generic.GenericData
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.slf4j.LoggerFactory
case class User(name: String, favoriteNumber: Int, favoriteColor: String)
class AvroProducer {
val logger = LoggerFactory.getLogger(getClass)
val kafkaBootstrapServer = sys.env("KAFKA_BOOTSTRAP_SERVER")
val schemaRegistryUrl = sys.env("SCHEMA_REGISTRY_URL")
val props = new Properties()
props.put("bootstrap.servers", kafkaBootstrapServer)
props.put("schema.registry.url", schemaRegistryUrl)
props.put("key.serializer", "io.confluent.kafka.serializers.KafkaAvroSerializer")
props.put("value.serializer", "io.confluent.kafka.serializers.KafkaAvroSerializer")
props.put("acks", "1")
val producer = new KafkaProducer[String, GenericData.Record](props)
val schemaParser = new Parser
val key = "key1"
val valueSchemaJson =
s"""
{
"namespace": "com.avro.junkie",
"type": "record",
"name": "User2",
"fields": [
{"name": "name", "type": "string"},
{"name": "favoriteNumber", "type": "int"},
{"name": "favoriteColor", "type": "string"}
]
}
"""
val valueSchemaAvro = schemaParser.parse(valueSchemaJson)
val avroRecord = new GenericData.Record(valueSchemaAvro)
val mary = new User("Mary", 840, "Green")
avroRecord.put("name", mary.name)
avroRecord.put("favoriteNumber", mary.favoriteNumber)
avroRecord.put("favoriteColor", mary.favoriteColor)
def start = {
try {
val record = new ProducerRecord("users", key, avroRecord)
val ack = producer.send(record).get()
// grabbing the ack and logging for visibility
logger.info(s"${ack.toString} written to partition ${ack.partition.toString}")
}
catch {
case e: Throwable => logger.error(e.getMessage, e)
}
}
}
Here’s a main class to get this to run (and that handles the log4j configuration for the Apache dependencies)
package com.lombardo.avroJunkie
import com.lombardo.avroJunkie.services.AvroProducer
import org.apache.log4j.BasicConfigurator
import org.slf4j.LoggerFactory
object Main {
def main(args: Array[String]) {
BasicConfigurator.configure()
val logger = LoggerFactory.getLogger(getClass)
logger.info("Starting the application")
val producer = new AvroProducer
producer.start
}
}